Empirically Evaluating the Effects of Perceptual Information Channels on the Size Perception of Tangibles in Near-Field Virtual Reality

Abstract

Immersive Virtual Environments (IVEs) incorporating tangibles are becoming more accessible. The success of applications combining 3D printed tangibles and VR often depends on how accurately size is perceived. Research has shown that visuo-haptic perceptual information is important in the perception of size. However, it is unclear how these sensory-perceptual channels are affected by immersive virtual environments that incorporate tangible objects. Towards understanding the effects of different sensory information channels in the near field size perception of tangibles of graspable sizes in IVEs, we conducted a between-subjects study evaluating the accuracy of size perception across three experimental conditions (Vision-only, Haptics-only, Vision and Haptics). We found that overall, participants consistently over-estimated the size of the dials regardless of the type of perceptual information that was presented. Participants in the haptics only condition overestimated diameters to a larger degree as compared to other conditions. Participants were most accurate in the vision only condition and least accurate in the haptics only condition. Our results also revealed that increased efficiency in reporting size over time was most pronounced in the visuo-haptic condition.

Publication
2021 IEEE Virtual Reality and 3D User Interfaces (VR)